	Reversible Reactions :	LeChâtelier's Principle	
	$H_{2} + I_{2} \rightleftharpoons 2 HI$	$_{11}$ 2 HI \rightleftharpoons H ₂ +	I,
concentration		IH Concentration Concentration Concentration	_
	time	time	
<u>Equilibrium:</u>			
• The point when	L		
•	of Reactant &	& Products	
• On the graph:	equilibrium occurs when t	he graph flattens out (dra	aw in the lines)
• Depends on		, &	
	(gases only)		
The reaction has N	OT STOPPED, but it appe	ears to have stopped!	
<u>Equilibrium Position:</u>			
Guldberg & Waage- La	aw of Mass Action:	$\underline{a}A + bB \rightleftharpoons cC + dD$	
	$K_{c} = \frac{[___]}{[__]}$	$\frac{_]}{_]} = \frac{[C]^{c} [D]^{d}}{[A]^{a} [B]^{b}}$	
K is the	of		at equilibrium
Magnitude of the Val	ue of K:		
K >> : more	present:	favored: Equilibrium	Lies to the
K << 1: more	present:	favored: Equilibrium	Lies to the
*Leave	in the equilibrium express out completely. out completely.		

•

Le Châtlier's Principle

hat are stresses (3)) on a chemical r	reaction?		
1		3.		
2				
	and	changes ł	nave	on
uilibrium position	, because			
Concentration :	add or remove	species.		
<u>ADD or Inc</u>	rease concentra	tion: Reaction will sh	ift to	&
	additional specie			
• Ex: $2NO_{(}$	g_{g} + $Br_{2(g)} \rightleftharpoons 2N$			
		Add N	IO: shift	_
• Remove or I	Decrease concer	tration Reaction will	shift to	&
replace speci				
Ex: 2NO	$_{g)} + Br_{2(g)} \rightleftharpoons 2N$	OBr _(g)		
		Remo	ve Br ₂ : shift:	
Example:		$FeSCN^{2+}(aq) \leftrightarrow Fe^{3+}(aq) +$	SCN ⁻ (aq)	
ADD SCN ⁻ : WI	hat happens?			
• .				
• .				
At the new equi	ilibrium is there mo	re, less or the same amoun	t of each chemical tha	t was initially preser
Stress	Shift	FeSCN ⁺²	Fe ⁺³	SCN ⁻
Add SCN ⁻				

•

Example:

 $FeSCN^{2+}{}_{(aq)} \leftrightarrow Fe^{3+}{}_{(aq)} + SCN^{-}{}_{(aq)}$

<u>Remove</u> Fe^{+3} : What happens?

- .
- .

At the new equilibrium is there more, less or the same amount of each chemical that was initially present.

Stress	Shift	FeSCN ⁺²	Fe ⁺³	SCN ⁻
Remove Fe ⁺³				

Why is the color lighter?

> Changes in Pressure : Gases only

•	Increase pressure by	_ the volume of the container will cause the Reaction
	to shift to the side with	moles of gas.
	$2NO_{(g)} + Br_{2(g)} \rightleftharpoons 2NOBr_{(g)}$	↑pressure: shift

WHY?

• Decrease pressure by ______ the volume of the container will cause the Reaction to shift to the side with ______ moles of gas.

 $2NO_{(g)} + Br_{2(g)} \rightleftharpoons 2NOBr_{(g)}$

↓pressure: shift: _____

WHY?

Example: $H_2O_{(g)} + Cl_2O_{(g)} \rightleftharpoons 2HOCl_{(g)} \downarrow pressure: shift:$

• Increasing pressure by adding an inert gas: What happens?

What are Inert Gases?

Example: $I_{2(g)} \leftrightarrow 2I_{(g)}$ At the new equilibrium is there more, less or the same amount of each chemical that was initially present.

Stress	Pressure change	Mole comparison	Shift	I2	Ι
Decrease Volume					
Increase Volume					

•

> <u>Stress: Temperature:</u>

• What side is ΔH on?

ο + ΔH: ______ side

ο - ΔH: _______ : ______ side

• Like concentration:

Increase Temp : Shift: _____Decrease Temp: Shift: _____

Changing temperature will change the value of the equilibrium constant, K.

EX: Endothermic	$2NO_{(g)} + Br_{2(g)} \rightleftharpoons 2NOBr_{(g)}$	ΔH =+125kJ
Increase temperature:		[products]
Shift:		$K_c = \frac{[_products]}{[_reactants]}$ therfore K

 $2NO_{(g)} + Br_{2(g)} \rightleftharpoons 2NOBr_{(g)}$

 $\Delta H = +125 kJ$ $K_{c} = \frac{[_products]}{[_reactants]} therfore K ____$

Shift:_____

Decrease temperature:

EX: <u>Exothermic</u>	$H_2O_{(g)} + Cl_2O_{(g)} \rightleftharpoons 2HOCl_{(g)}$	ΔH= -125kJ
Increase temperature: Shift:		$K_{c} = \frac{[_products]}{[_reactants]}$ therfore K
	$H_2O_{(g)} + Cl_2O_{(g)} \rightleftharpoons 2HOCl_{(g)}$	ΔH= -125kJ

Decrease temperature:	[products]
Shift:	$K_c = \frac{1}{[reactants]}$ therfore K

What

Example:

 $N_2O_{4(g)} \leftrightarrow 2NO_{2(g)}$

 $\Delta H = +350 \text{ kJ}$

Write the ΔH on the correct side of the reaction.

At the new equilibrium is there more, less or the same amount of each chemical that was initially present.

Stress	Shift	N2O4(g)	2NO _{2(g)}	Evaluate K	Change to K
Decrease Temperature				$K_{c} = \frac{[_products]}{[_reactants]}$	
Increase Temperature				$K_{c} = \frac{[_products]}{[_reactants]}$	