

Equilibrium:

- The point when \qquad
of Reactant \& Products \qquad
- On the graph: equilibrium occurs when the graph flattens out (draw in the lines)
- Depends on \qquad , \qquad , \&
\qquad (gases only)

The reaction has NOT STOPPED, but it appears to have stopped!

Equilibrium Position:

Guldberg \& Waage- Law of Mass Action: \quad a $\mathrm{A}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}$

$$
\mathrm{K}_{\mathrm{c}}=\frac{[\ldots]}{[\ldots}=\frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}}
$$

K is the \qquad of \qquad at equilibrium

Magnitude of the Value of K :

K >> : more \qquad present: \qquad favored: Equilibrium Lies to the \qquad

K << 1: more \qquad present: \qquad favored: Equilibrium Lies to the \qquad

1. What gets included in the equilibrium expression? WHY??
\qquad out completely.

* Include \qquad out completely.

Le Châtlier's Principle

if a stress is imposed on a system at equilibrium,

What are stresses (3) on a chemical reaction?

1. .
2.
3. .

* \qquad and \qquad changes have \qquad on
equilibrium position, because.....
$>$ Concentration : add or remove species.
- ADD or Increase concentration: Reaction will shift to \qquad \& consume the additional species.
- Ex: $\quad 2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{Br}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NOBr}_{(\mathrm{g})}$

Add NO: shift \qquad

- Remove or Decrease concentration Reaction will shift to \qquad \& replace species removed.
Ex: $\quad 2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{Br}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NOBr}_{(\mathrm{g})}$
Remove Br_{2} : shift: \qquad

Example:

$$
\mathrm{FeSCN}^{2+}(\mathrm{aq}) \leftrightarrow \mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+\mathrm{SCN}^{-}(\mathrm{aq})
$$

ADD SCN $^{-}$: What happens?
-

- .

At the new equilibrium is there more, less or the same amount of each chemical that was initially present.

Stress	Shift	$\mathbf{F e S C N}^{+2}$	$\mathbf{F e}^{+3}$	SCN $^{-}$
Add SCN				

Why is the color darker?

Example:

$$
\mathbf{F e S C N}^{2+}{ }_{(\mathrm{aq})} \leftrightarrow \mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+\mathbf{S C N}^{-}{ }_{(\mathrm{aq})}
$$

Remove Fe^{+3} : What happens?
-
-

At the new equilibrium is there more, less or the same amount of each chemical that was initially present.

Stress	Shift	FeSCN $^{+2}$	Fe $^{+3}$	SCN $^{-}$
Remove Fe^{+3}				

Why is the color lighter?
$>$ Changes in Pressure : Gases only

- Increase pressure by \qquad the volume of the container will cause the Reaction to shift to the side with \qquad moles of gas.
$2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{Br}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NOBr}_{(\mathrm{g})}$
$\uparrow p r e s s u r e: ~ s h i f t$ \qquad

WHY?

- Decrease pressure by \qquad the volume of the container will cause the Reaction to shift to the side with \qquad moles of gas.
$2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{Br}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NOBr}_{(\mathrm{g})}$
\downarrow pressure: shift: \qquad

WHY?

Example: $\quad \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{Cl}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons 2 \mathrm{HOCl}_{(\mathrm{g})} \quad \downarrow$ pressure: shift: \qquad

- Increasing pressure by adding an inert gas: What happens?

What are Inert Gases?

Example:
$\mathbf{I}_{(\mathrm{g})} \leftrightarrow \mathbf{2 I}_{(\mathrm{g})}$
At the new equilibrium is there more, less or the same amount of each chemical that was initially present.

Stress	Pressure change	Mole comparison	Shift	\mathbf{I}_{2}	I
Decrease Volume					
Increase Volume					

> Stress: Temperature:

- What side is $\Delta \mathrm{H}$ on?
- $+\Delta \mathrm{H}$: \qquad : \qquad side
- $-\Delta \mathrm{H}$: \qquad : \qquad side
- Like concentration:
- Increase Temp : Shift: \qquad Decrease Temp: Shift: \qquad

Changing temperature will change the value of the equilibrium constant, K.

EX: $\quad \underline{\text { Endothermic }} \quad 2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{Br}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NOBr}_{(\mathrm{g})}$
$\Delta H=+125 k J$
Increase temperature:
Shift: \qquad $\mathrm{K}_{\mathrm{c}}=\frac{\text { [__products] }}{[\ldots \text { reactants] }}$ therfore K \qquad

$$
2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{Br}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NOBr}_{(\mathrm{g})}
$$

$$
\Delta H=+125 k J
$$

Decrease temperature:

Shift: \qquad $\mathrm{K}_{\mathrm{c}}=\frac{[\ldots \text { products }]}{[\ldots \text { reactants] }}$ therfore K \qquad

EX: Exothermic

$$
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{Cl}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons 2 \mathrm{HOCl}_{(\mathrm{g})}
$$

$$
\Delta H=-125 \mathrm{~kJ}
$$

Increase temperature:
Shift: \qquad

$$
\mathrm{K}_{\mathrm{c}}=\frac{[\ldots \text { products }]}{[\ldots \text { reactants] }} \text { therfore } \mathrm{K} .
$$

\qquad

$$
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{Cl}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HOCl}_{(\mathrm{g})} \quad \Delta \mathbf{H}=\mathbf{- 1 2 5} \mathbf{k J}
$$

Decrease temperature:

Shift: \qquad

$$
\mathrm{K}_{\mathrm{c}}=\frac{[\ldots \text { products }]}{[\ldots \text { reactants }]} \text { therfore } \mathrm{K}
$$

\qquad

What \qquad
Example:

$$
\mathbf{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \leftrightarrow \mathbf{2} \mathbf{N O}_{2(\mathrm{~g})}
$$

$$
\Delta \mathbf{H}=+350 \mathrm{~kJ}
$$

Write the $\mathbf{\Delta H}$ on the correct side of the reaction.
At the new equilibrium is there more, less or the same amount of each chemical that was initially present.

Stress	Shift	$\mathbf{N}_{2} \mathbf{O}_{4(\mathrm{~g})}$	$\mathbf{2 N O}_{2(\mathrm{~g})}$	Evaluate \mathbf{K}	Change to K
Decrease Temperature				$\mathrm{K}_{\mathrm{c}}=\frac{\text { [__products] }}{\text { [_reactants] }}$	
Increase Temperature				$\mathrm{K}_{\mathrm{c}}=\frac{\text { [__products] }}{\text { [_reactants] }}$	

